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The error signal z is the difference between the command
r and the measurement yn, which may be corrupted by noise.
Since this is the only error signal available for feedback, it
serves as the performance variable for the adaptive controller.
However, the error signal e0, which is the difference between
the command r and the plant output y0, provides a true
measure of the command-following performance. Since this
signal is not available for feedback, it is used only as a
diagnostic. If sensor noise is absent, then z ≡ e0.
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Fig. 1: Block diagram representation of the adaptive servo problem with the
adaptive controller Gc;k and the nonlinear plant G given by (1), (2).

III. ADAPTIVE CONTROL ALGORITHM

RCAC requires limited modeling data for SISO linear
plants, namely, the sign of the leading numerator coefficient,
the relative degree, and the locations of nonminimum-phase
(NMP) zeros, if any. This modeling information is used to
construct the filter Gf , which serves as a target model for
the intercalated transfer function, as explained in [4]. The
controller order nc as well the adaptation weight Rθ and
control weight Ru must also be specified. As in [4], the
controller coefficient matrix θ is initialized to be zero at
the start of all numerical examples; this assumption reflects
the absence of additional modeling information. Details of
RCAC and its implementation using recursive least squares
to update θ are given in [4].

IV. NUMERICAL EXAMPLES

We consider 3rd-order asymptotically stable linear dy-
namics, where (A,B,C) is minimal and Gy0u is minimum
phase with relative degree 1. The vector Bnl is chosen for
each example in order to consider nonlinearities f that are
either matched or unmatched with the control input, that
is, Bnl = B or Bnl 6= B, respectively. Note that, in the
case where f is unmatched, it is impossible for u to directly
cancel the effect of f. The nonlinearity f is represented as
f(x) = αf0(x), where α ∈ R is varied to assess the impact
of f on stability and performance.

We are primarily interested in the case where f depends
on components of x that are not measured; in this case, f is
inaccessible. Consequently, if f is matched but inaccessible,
then u cannot use the measurements yn to cancel f without
estimating unmeasured states. For all of the examples in this
paper, f is inaccessible. This assumption precludes the use
of feedback linearization whether or not f is known.

For each example, f is unmodeled, and the goal is to
determine the ability of RCAC to account for the presence
of f. We consider command following with step and har-
monic commands as well as disturbance rejection with step,
harmonic, and stochastic disturbances.

Since f is unmodeled, we choose Gf based on the mod-
eling information needed by RCAC in the case f = 0. We
thus set [4]

Gf(q) = −q−1, (7)

where Gf captures the relative degree, NMP zeros (none in
the minimum phase case), and sign of the leading numerator
coefficient of Gy0u. The minus sign in (7) arises due to (4).

V. COMPARISON OF RCAC AND LQG FOR CUBIC f

In this section we apply RCAC to G in the case where
f is a matched cubic nonlinearity. The goal is to determine
how the final RCAC controller accounts for the effect of f.
To do this, we first design an LQG controller based only on
the linear plant G, where the LQG controller is constructed
to include an internal model of the command. Since the
LQG controller is designed without regard to f, there is no
stability or performance guarantee when it is applied to G.
Nevertheless, applying the LQG controller to G for various
values of α provides a measure of the inherent robustness
of LQG to f. This provides a baseline comparison of the
performance of RCAC relative to LQG with f present.

Next, RCAC is applied to the nonlinear plant G, and
the final RCAC controller is saved as an LTI controller.
We then apply the final RCAC controller (and thus without
further adaptation) to the nonlinear plant G and compare
its performance to the performance of the LQG controller
as applied to the same nonlinear plant G. In particular, we
analyze the spectral content of e0 and u in order to determine
how the final RCAC controller accounts for the effect of f .

We consider command following with the harmonic com-
mand r(k) = cosωrk, where ωr = 0.2 rad/sample. No
disturbance is present. The nonlinearity f is given by f(x) =
αx31, where α is chosen below. We set
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Note that Gy0u has the real pole 0.801 rad/sample and the
lightly damped poles 0.817±0.559 rad/sample, which have
a frequency of 0.6 rad/sample. The zeros of (8), (9) are 0.3
rad/sample and 0.4 rad/sample. Finally, Bnl = B, and thus f
is matched. For simplicity, we assume x(0) = 0. Assuming
that x1 is harmonic with frequency ωr, note that

f(sinωrk) = α sin3 ωrk =
3α

4
sinωrk +

α

4
sin 3ωrk.

Therefore, f generates a harmonic signal at the frequency
3ωr. Since these signals occur in the closed-loop system, the
signal f( 34 sinωrk+

1
4 sin 3ωrk) produces additional spectral

content at the frequencies 5ωr and 7ωr, which, in turn,
produces further spectral content. These signals appear as
unmodeled disturbances, which may need to be suppressed
by the controller. Note that the plant (8), (9) is chosen to have
a pair of lightly damped poles at the frequency 3ωr = 0.6

1696



1697



command following with d(k) = 0. For each example, the
command is either a step r(k) = β or a harmonic r(k) =
β cosωrk, where ωr > 0, and the initial condition is x(0) =
γ[1 1 1]T. The nominal parameters are α = 0.1, β = 1,
γ = 0, and ωr = 0.2 rad/sample. In examples 2 and 4
we test robustness by individually varying α, β, and γ with
the remaining parameters fixed at their nominal values. The
goal is to determine the range of values of α, β, and γ for
which the command is followed asymptotically. Sensor noise
is assumed to be absent for the examples in this section, but
is included in Section VII. Table I summarizes the examples
in this section. Except for Example 1, all examples in the
paper involve unmatched nonlinearities.

TABLE I: Summary of command-following examples.

Example f0 f Matched? Command
1 x21 + 1 Yes harmonic
2 |x1x2| No step
3 sgn(x2) No harmonic
4 ex1 No harmonic

5
� 1

|x1|+1

log(1 + 5x22)

�
No Harmonic

Example 1. Harmonic command following with a
quadratic-plus-bias matched nonlinearity. Let f0(x) = x21+1
and Bnl = B. To evaluate the effect of the control input u for
the nonlinear plant, we first apply RCAC to the linear plant,
that is, with f = 0, and obtain the control input ulin produced
by the RCAC controller for the linear plant. By comparing
u to ulin, we can determine how RCAC, as applied to the
nonlinear plant, modifies the control input in order to account
for the presence of f. For the nominal parameters α, β, γ, ωr,
Figure 5 shows that RCAC follows the harmonic command.
Figure 6 shows that RCAC generates a control signal u for
the nonlinear plant such that u+f is close to ulin. This shows
that, in the matched case, the control generated by RCAC
for the nonlinear plant works together with the inaccessible
nonlinearity to produce a control signal that approximates the
control signal for the linear plant. In effect, RCAC cancels
f despite the fact that f is unknown and f(0) 6= 0. �
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Fig. 5: Example 1: Harmonic command following for f0(x) = x2
1 +1 with

the nominal parameters. After a transient of about 20 steps, RCAC follows
the harmonic command.

Fig. 6: Example 1: Control input corresponding to Figure 5. The control
signal u(k) for the nonlinear system satisfies u(k) + f(x(k)) � ulin(k).

Example 2. Step command following with a continuous-
but-nondifferentiable unmatched nonlinearity. Let f0(x) =
|x1x2| and Bnl = [−1 0 0]T. For the nominal values of α, β,
γ, ωr, Figure 7 shows that RCAC follows the step command.
Next, we vary α, β, γ one at a time with the remaining
parameters set to their nominal values. The resulting behavior
of e0 (not shown) for α ∈ [−0.35, 0.58], β ∈ [−3.73, 5.54],
and γ ∈ [−0.22, 0.55] is similar to Figure 7. This provides
an estimate of the region of convergence of RCAC in terms
of the parameters α, β, γ.

Fig. 7: Example 2: Step command following for f0(x) = jx1x2j with the
nominal parameters. After the transient, RCAC follows the step command.

Next, we examine the performance of the final controller
Gc,300 corresponding to Figure 7 by applying it as an LTI
controller to the nonlinear plant. Using Gc = Gc,300 from
k = 0, the behavior of e0 (not shown) is similar to Figure
7 for the values α ∈ [−0.31, 0.28], β ∈ [−3.12, 2.92], γ ∈
[−1.70, 2.34] varied as described above. This provides an
estimate of the region of convergence of the final controller
Gc = Gc,300 in terms of the parameters α, β, γ. �

Example 3. Harmonic command following with a dis-
continous unmatched nonlinearity. Let f0(x) = sgn(x2),
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