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In a simplistic sense, position can be determined from 
measurements of velocity by integration, and velocity can 
be determined from measurements of position by differ-

entiation. In the former case, integration requires an initial 
condition and thus requires at least one position measure-
ment. However, even in the case where the initial position 
is known, constant-but-unknown velocity-measurement 
noise, that is, bias, produces a spurious ramp in the com-
puted position. On the other side of the coin, the accuracy 
of differentiation is limited by sensor noise, and thus ap-
proximate differentiation must be used in practice. Hence, 
low-frequency noise is the bane of integration, whereas 
high-frequency noise is the nemesis of differentiation.

A more sophisticated approach to obtaining position 
from velocity measurements and velocity from posi-
tion measurements is to use a model-based observer. Of 
course, this can be done only if the state whose estimate is 
required is observable from the available measurements. 
In the case of a rigid body, velocity is observable from 
position measurements, but the opposite is not true, that 
is, position is not observable from velocity measurements. 
For an oscillator, however, it is easy to show that position 
is, in fact, observable from velocity measurements, and 
thus it is possible to use an observer to estimate position 
from velocity measurements. In effect, the observer, whose 
error dynamics are asymptotically stable, can be viewed as 
an approximate integrator that does not require an initial 
position measurement.

In addition to not requiring knowledge of the initial 
position, a position observer is advantageous relative to 
velocity integration in the presence of measurement bias. 
In particular, for velocity measurements with bias, position 
estimates provided by an observer would include an offset 
but not a spurious ramp component, as in the case of an 
integrator. In a servo application, the effect of bias in the 
velocity measurement would need to be assessed within 
the context of the closed-loop system. With these issues in 
mind, the purpose of this article is to address the question 
of whether it is possible to implement a servo feedback loop 
with either an integrator or an observer so that the position 
of an oscillator follows position step commands using only 
velocity measurements?

It is not immediately obvious whether the answer to this 
question is yes or no. In particular, a servo loop that can 
achieve asymptotic following of position step commands 
requires integral action in the feedback loop. Integral 
control would not be effective, however, due to pole-zero 
cancellation at zero. Therefore, a controller that achieves 
zero asymptotic error to a position step command with 
velocity measurements must possess a double integrator. 
In implementing such a controller, the question arises as 
to whether pole-zero cancellation at zero would lead to 
a hidden unbounded response due to a constant distur-
bance injected at some point in the loop [1], [2]. In addition, 
unknown, arbitrary initial conditions could potentially lead 
to an unbounded response. The presence of an unbounded 
response, due to either an injected step or nonzero initial 
conditions, would mean that the control system could not 
be successfully implemented in practice. The possible pres-
ence of hidden instabilities in a single-input, single-output 
closed-loop system is addressed in [3] by analyzing the 
“gang of four” transfer functions.

Although classical in nature, this question does not 
appear to be addressed in the literature. A related problem 
involving acceleration measurements is considered in [4], 
while the effect of sensor and actuator bias on integral con-
trol is analyzed in [5].

The problem of using velocity measurements in a posi-
tion servo loop is not merely academic but has practical 
implications for static shape control of flexible structures 
using piezoelectric actuators [6], [7]. There are three types 
of measurements that can be obtained from piezoelectric 
materials, namely, charge and voltage, which are associated 
with strain, and current, which is associated with strain rate 
[8]. Although charge and voltage measurements provide 
information about strain, these measurements roll off at low 
frequency due to capacitance leakage, and thus they provide 
no direct information about static shape. For the purpose of 
adding damping for vibration suppression, strain rate is a 
suitable measurement, and rate-feedback control laws are 
often used to enhance energy dissipation [9].

If, however, the objective is static shape control, then the 
structure must be able to follow position step commands 
[8]. Unfortunately, the rolloff of charge and voltage mea-
surements at dc limits the use of piezoelectric materials for 
static shape control based on feedback, which suggests that 
knowledge of static position is impossible without additional Date of publication: 11 November 2016
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position sensors. To overcome this difficulty, applications of 
piezoelectric materials that require shape control employ a 
position sensor, which is typically based on optics. These 
sensors, however, are generally expensive and difficult to 
implement. This limitation is well known, and attempts 
have been made to overcome this problem, especially within 
the context of atomic force microscopes [10]–[12].

Despite this limitation, it is easy to see why static shape 
control using feedback and without position sensing is pos-
sible, at least in principle. In particular, a dynamic model 
of the structure could be used with strain measurements 
(which unavoidably roll off at low frequency) as the basis 
of an observer that estimates the true shape; this estimate 
could then be used in a feedback control system. In effect, 
the observer uses the structural model to replace the low-
frequency shape information that is missing from the 
strain measurements. The observer thus provides the error 
signal needed by the feedback controller.

Also relevant to the use of charge and voltage measure-
ments is the feedback control law known as positive position 
feedback (PPF) [13], [14]. As its name suggests, implement-
ing PPF with piezoelectric sensors assumes the availabil-
ity of a strain measurement. This assumption is incorrect, 
however, since the strain measurement rolls off at dc. This 
rolloff gives rise to phase shifts at low frequency, making it 
difficult to follow low-frequency position commands.

The above discussion shows that the practical construc-
tion of controllers that can follow position commands using 
only velocity measurements depends on knowing whether 
or not such controllers can be implemented without hidden 
instabilities due to pole-zero cancellation at zero. The aim 
of this article is thus to determine the feasibility of using 
velocity measurements within a servo loop whose goal is 
to follow position commands.

PROBLEM SETUP
For the undamped oscillator shown in Figure 1, transfer 
functions from the force f  to the position q  and from the 
force f  to the velocity qo  are
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respectively. Note that Gv  has a zero at 0. Since no damp-
ing is assumed to be present, both transfer functions are 
Lyapunov stable but neither is asymptotically stable. For all 
examples, m 1=  kg and k 1=  N/m.

This article considers the feedback control architectures:
 » Architecture 1: Position command with linear-qua-
dratic-Guassian (LQG) control, where position is 
measured.

 » Architecture 2: Position command with LQG control, 
where velocity is measured but is integrated to obtain 
a naïve estimate of the position.

 » Architecture 3: Position command with LQG control, 
where velocity is measured and position is estimated 
using an observer.

Architecture 1 provides an illustrative baseline but violates 
the standing assumption that only velocity is measured.

ARChITECTURE 1: POSITION COMMANd wITh 
POSITION MEASUREMENTS
The case of position command with position measure-
ments is considered first. To ensure zero asymptotic error 
for position step commands, an integrator is cascaded with 
the oscillator modeled by Gp . For the augmented system, 
which is Lyapunov stable, a third-order LQG controller is 
designed. This architecture is shown in Figure 2. To study 
the effect of bias, steps are injected using the convention 
shown in Figure 3.

The response to a position unit step command r  is 
shown in Figure 4 for both zero and nonzero initial condi-
tions for the oscillator and the integrator, as well as in the 
presence of a position-measurement bias injected at node 4. 
As expected, the position of the mass follows the position 
step command with zero asymptotic error except for the 
case of the position-measurement bias, where the asymp-
totic command-following error is nonzero but bounded.
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Figure 1  An undamped oscillator.
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Figure 3 For a bias Vi  injected at node i  in Figures 2, 5, and 8, the 
node corresponding to (a) is replaced by (b).
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ARChITECTURE 2: POSITION COMMANd wITh 
VELOCITY MEASUREMENTS, dOUBLE INTEGRATOR, 
ANd MEASUREMENT INTEGRATION
The case where velocity is measured is considered next. 
In this case, the position of the mass is determined by 
integrating the velocity measurement, and the integrated 
measurement is used in a servo loop to follow a position 
step command. Note that the initial position of the mass is 
assumed to be unknown, and thus the integrated velocity 
is not necessarily the true position of the mass. This archi-
tecture is shown in Figure 5. Since the output of the plant is 
velocity, the plant is Gv , whereas Gp  is used to determine, 
as a diagnostic tool, the true position of the mass.

Since the plant has a zero at zero, a double integrator is 
needed to ensure zero asymptotic error for position step 
commands. In addition, an integrator is added after the 
plant to provide a naïve position estimate qt  that can be 
used to generate an error signal.

To investigate the performance of this architecture, the 
final-value theorem is applied to all combinations of input 
and output nodes. The corresponding transfer functions 
are parameterized as
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These transfer functions are used to determine the asymp-
totic response to unit step disturbances injected at nodes 1–6 
shown in Figure 5. At nodes 1, 2, and 5, the step disturbance 
represents a bias due to the controller, whereas, at nodes 3 
and 4, the step disturbance represents an external force dis-
turbance and velocity-measurement bias, respectively. For 
each pair of input and output nodes, the asymptotic response 
to a unit step disturbance is shown in Table 1, where

 .L a
b

1
4

4_ -  (7)

Note the response at both nodes 3 and 6 with step injection 
at node 4 is unbounded.

The response to a unit position step command is shown 
in Figure 6 for zero and nonzero initial conditions as well 
as the case where velocity-measurement bias is injected at 
node 4. In all cases, the integral of the velocity measure-
ment is initialized to be zero. Figure 6 shows that, for non-
zero initial conditions and no velocity-measurement bias, 
the asymptotic command-following error in the position 
q  is nonzero but bounded. However, the position q  has a 
ramp component in the case where velocity-measurement 
bias is injected at node 4. These simulations show that this 
architecture is unusable in practice for following position 
step commands.
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Figure 4 Position q  of the mass for a position unit step command r  in Architecture 1 shown in Figure 2 with (a) zero initial conditions 
with no position-measurement bias, (b) nonzero initial conditions with no position-measurement bias, and (c) zero initial conditions with 
position-measurement bias injected at node 4. As expected, with the measurements of true position q  available, the command-following 
error converges to zero in the absence of position-measurement bias. In the case where position-measurement bias is present, the 
asymptotic command-following error is nonzero but bounded.

r e+
−

q̂q̇

q

uv

1 2 3 4 5

6

− +

1
s2

Gp

GvGc
1
s

Figure 5 Architecture 2. Note that e is not the command-following 
error since qt  is a naïve position estimate, which is not necessarily 
the true position. The true command-following error at node 6 is 
not known in practice but is used as a performance diagnostic.

Table 1 asymptotic response at node “Out” due to a unit 
step disturbance injected at node “in.” The constant L1  is 
defined by (3) and (7).

in    Out 1 2 3 4 5 6 

V1 0 0 1 0 1 1-

V2 L1 0 L1- 0 L1- L1

V3 0 0 0 0 0 0 

V4 0 0 3- 0 0 3

V5 0 0 1- 0 0 1 

V6 0 0 0 0 0 1 
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The inability of this architecture to follow position step 
commands stems from the naïve attempt to obtain posi-
tion by integrating velocity. In the absence of knowledge 
of the initial position, this approach gives nonzero but 
bounded asymptotic position error. More seriously, how-
ever, velocity-measurement bias leads to a ramp in the 
position q  despite the fact that no ramp appears in the 
integrated velocity qt .

The sensitivity function in the traditional sense is not 
applicable to this architecture since the signal e  in Figure 5 
is not the command-following error but, rather, is the differ-
ence between the command r  and the naïve position esti-
mate qt . We therefore consider the frequency response of 
the transfer functions from the command r  and an injected 
velocity-measurement step at node 4 to the true position 
error at node 6. The rollup at dc in Figure 7(b) indicates that 
velocity-measurement bias causes an unbounded response 
in the true position error.

ARChITECTURE 3: POSITION COMMANd wITh 
VELOCITY MEASUREMENTS, dOUBLE INTEGRATOR, 
ANd POSITION OBSERVER
To overcome the limitations of Architecture 2, the integrator 
is replaced with an observer. A realization of Gv  is given by
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 ,y Cx=  (9)
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An observer for (8) and (9) is

 ( ),x Ax Bu F y Cx= + + -to t t  (10)

 ,y C xo=t t  (11)
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Figure 6 Position q  of the mass for a position unit step command r  in Architecture 2 shown in Figure 5 with (a) zero initial conditions 
with no velocity-measurement bias, (b) nonzero initial conditions with no velocity-measurement bias, and (c) zero initial conditions with 
a velocity-measurement bias injected at node 4. In (a), the command-following error converges to zero; in (b), a bounded position offset 
is present; and in (c), the position of q  exhibits a ramp component, and thus the diagnostic error at node 6 in Figure 5 diverges.
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Figure 7 Architecture 2. The magnitude frequency response of the transfer functions from (a) the command r  and (b) an injection at 
node 4 to the position command-following error. In (a), the 40-dB/decade rolloff at dc indicates that the asymptotic response at dc due to 
a step command is bounded, whereas, in (b), the rollup at dc indicates that the asymptotic response at dc due to velocity-measurement 
bias diverges.
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where

,C 1 0o = 6 @

so that the output yt  of the observer (10) and (11) is the posi-
tion estimate. The observer can be rewritten as

 ( ) .x A FC x Bu Fq= - + +to t o  (12)

To ensure zero asymptotic error for a position step com-
mand, a double integrator is cascaded with the plant, and 
an LQG controller of order four is designed for the aug-
mented plant. The architecture for the closed-loop system 
is shown in Figure 8, where

 ,G G Gu qo o o= o6 @  (13)

and thus

 ( ) ( ) ( ) ( ) ( ) .q s G s u s G s q su qo o= +t oo  (14)

To investigate the performance of this architecture, the 
final-value theorem is applied to all combinations of input 
and output nodes. The corresponding transfer functions 
are parameterized as in (3)–(6). These transfer functions 
are used to determine the asymptotic response to unit step 
disturbances injected at nodes 1–6 shown in Figure 8. At 
nodes 1, 2, and 5, the step disturbance represents a bias 
due to the controller, whereas, at nodes 3 and 4, the step 
disturbance represents an external force disturbance and 
velocity-measurement bias, respectively. For each pair of 
input and output nodes, the asymptotic response to a unit 
step disturbance is shown in Table 2, where
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Note that all of the responses are bounded, which shows 
that the closed-loop system has no hidden instabilities.

Finally, the loop is simulated and the responses shown 
in Figure 9 are consistent with the corresponding entries 
in Table 2. In particular, the closed-loop system exhibits 
zero asymptotic position command-following error for 

nonzero initial conditions, and, unlike Architecture 2, does 
not exhibit a ramp in the presence of velocity-measurement 
bias at node 4, as indicated by Figure 10.

CONCLUSIONS
The analysis of Architecture 3 shows that position step com-
mands for an oscillator can be followed with zero asymptotic 
command-following error in the absence of velocity-mea-
surement bias and step disturbances and with bounded 
asymptotic command-following error in the presence of 
velocity-measurement bias and step disturbances. Most 
importantly, by considering the effect of a step disturbance 
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Figure 8 Architecture 3. Note that e is not the command-following 
error since qt  is the output of the observer Go , and thus qt  is not 
necessarily the true position. The true command-following error at 
node 6 is not known in practice but is used as a performance diag-
nostic in order to assess the feasibility of the architecture.

Table 2 asymptotic response at node “Out” due to a unit 
step disturbance injected at node “in.” The constants ,L1  
L2, L3, and L4  are defined by (3)–(7) and (15).

in    Out 1 2 3 4 5 6 

V1 0 0 L2 0 1 L2

V2 L1 0 L3 0 L1- L3

V3 0 0 0 0 0 0 

V4 0 0 L4 1 0 L4

V5 0 0 L2- 0 0 L2-

V6 0 0 0 0 0 1 
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Figure 9 Position q  of the mass for a position unit-step command r  in Architecture 3 shown in Figure 8 with (a) zero initial conditions 
with no velocity-measurement bias, (b) nonzero initial conditions with no velocity-measurement bias, and (c) zero initial conditions with 
velocity-measurement bias injected at node 4. The command-following error converges to zero for arbitrary initial conditions and is 
bounded in the presence of velocity-measurement bias.
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injected at all key points in the loop, it was shown by means 
of the final-value theorem and verified numerically that no 
hidden instabilities are present in the loop due to pole-zero 
cancellation at zero. This shows that, for an oscillator, it is 
possible to follow position step commands using velocity 
measurements. This result has practical implications for 
the problem of constant-shape control using velocity (for 
example, strain-rate) measurements, which may be the only 
available measurements in cases where it is not feasible to 
measure position without rolloff and phase shift down to dc.

Finally, a practically relevant extension of the problem 
considered in this article is to consider the case where the 
oscillator dynamics are uncertain. This problem is chal-
lenging due to the fact that both the observer and LQG 
controller must be robustified to the plant uncertainty. 

This problem may also present a nontrivial challenge to 
adaptive-control methods.
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Figure 10 Architecture 3. The magnitude frequency response of 
the transfer functions from (a) the command r  and (b) an injec-
tion at node 4 to the position command-following error. In (a), the 
40-dB/decade rolloff at dc indicates that the asymptotic response 
at dc to a step command is bounded, whereas, in (b), the flat fre-
quency response at dc indicates that the asymptotic response at 
dc due to velocity-measurement bias is bounded.
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